Hijriah: Loading...

Masehi: Loading...

Banda Aceh, Aceh, Indonesia 23111

Production of Graphene By Coconut Shell As an Electrode Primary Battery Cell

Authors

  • Elsa Pasaribu Post-graduated School Program, Department of Chemistry, Faculty of Mathematics and Sciences, University of Sumatera Utara, Medan
  • Rikson Siburian Department of Chemistry, Faculty of Mathematics and Sciences, University of Sumatera Utara, Medan
  • Minto Supeno Department of Chemistry, Faculty of Mathematics and Sciences, University of Sumatera Utara, Medan

DOI:

https://doi.org/10.22373/ekw.v9i1.14880

Keywords:

Coconut shells, Graphene, Characterization

Abstract

Abstract: Coconut shells are a natural resource that contains a lot of carbon (C). The pyrolysis process can be used to create coconut shells. A single layer of carbon atoms that have undergone sp2 hybridization to form a hexagonal, two-dimensional structure is known as Graphene. Graphene has excellent potential for battery manufacturing applications, supercapacitors, etc. Activated carbon and the pyrolisis method of producing Graphene were combined and heated to 600 oC for one hour. The graphene generated is assessed using an XRD, SEM-EDX, TEM, Raman, and conductometer. The results of the X-ray diffractogram analysis revealed that the peaks at 2θ = 23,87o and 44,5o are not particularly sharp and slightly broadened. It means Graphene are well formed. SEM-EDX investigation reveals that the surface size and shape structure is smaller and thinner, a flat pile dominated by carbon atoms. The result of conductometer analysis shows the electrical conductivity of Graphene is quite good, but Graphene can still not control the movement of electrons. Graphene has layer distances between Graphene and Graphene layers are 3.3 Å (TEM data), with many Graphene layers being 0.85 (multi-layer) (Raman data).

Abstrak: Batok kelapa merupakan salah satu sumber daya alam yang mengandung banyak karbon (C). Proses pirolisis dapat digunakan untuk membuat batok kelapa. Satu lapisan atom karbon yang telah mengalami hibridisasi sp2 untuk membentuk struktur dua dimensi heksagonal dikenal sebagai Grafena. Grafena memiliki potensi besar untuk aplikasi pembuatan baterai, superkapitasitor, dan sebagainya. Karbon aktif dengan metode pirolisis untuk memproduksi Grafena dipanaskan hingga 600 oC selama satu jam. Grafena yang dihasilkan dikarakterisasi menggunakan XRD, SEM-EDX, TEM, Raman, and Konductometer. Hasil analisis difraktogram sinar-X mengungkapkan bahwa puncak pada 2θ = 24,22o dan 44o tidak terlalu tajam dan sedikit melebar. Ini berarti Grafena terbentuk dengan baik. Analisis SEM-EDX mengungkapkan bahwa ukuran permukaan dan struktur bentuk lebih kecil dan lebih tipis dan itu adalah tumpukan datar yang didominasi oleh atom karbon. Hasil analisis konduktometer menunjukkan konduktivitas listrik Grafena cukup baik, namun Grafena masih belum mampu mengontrol pergerakan elektron. Grafena memiliki jarak lapisan antara lapisan  Grafena dan Grafena adalah 3,3 Å (data TEM) dengan jumlah lapisan Grafena adalah 0,85 (multilapisan) (data Raman).

References

Hu, T., Sun, X., Sun, H., Xin, G., Shao, D., Liu, C., & Lian, J. (2017). Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Physical Chemistry Chemical Physics, 16(3), 1060–1066. https://doi.org/10.1039/c3cp54494j

Kaushal, A., Dhawan, S. K., & Singh, V. (2019). Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO). AIP Conference Proceedings, 2115. https://doi.org/10.1063/1.5112945

Kucinkskis G, Bajars G, K. J. (2013). Graphene in Lithium Ion Battery Cathode Materials. Riga, 240, 66–79.

Kumar, C. M. P., Venkatesha, T. V., & Shabadi, R. (2018). Preparation and corrosion behavior of Ni and Ni-graphene composite coatings. Materials Research Bulletin, 48(4), 1477–1483. https://doi.org/10.1016/j.materresbull.2012.12.064

Liu, X., Wang, C. Z., Hupalo, M., Lin, H. Q., Ho, K. M., & Tringides, M. C. (2013). Metals on Graphene: Interactions, Growth Morphology, and Thermal Stability. Crystals, 3(1), 79–111. https://doi.org/10.3390/CRYST3010079

Liyanage, C. D., & Pieris, M. (2017). A Physico-Chemical Analysis of Coconut Shell Powder. Procedia Chemistry, 16, 222–228. https://doi.org/10.1016/j.proche.2015.12.045

Meyer, J. C. (2019). Transmission electron microscopy (TEM) of graphene. Graphene: Properties, Preparation, Characterisation and Devices, 101–123. https://doi.org/10.1533/9780857099334.2.101

Mubarik, S., Qureshi, N., Sattar, Z., Shaheen, A., Kalsoom, A., Imran, M., & Hanif, F. (2021). Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications. Nanomanufacturing, 1(3), 109–159. https://doi.org/10.3390/nanomanufacturing1030010

Muniyalakshmi, M., Sethuraman, K., & Silambarasan, D. (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings, 21, 408–410. https://doi.org/10.1016/j.matpr.2019.06.375

Rummeli, M. H., Ta, H. Q., Mendes, R. G., Gonzalez-Martinez, I. G., Zhao, L., Gao, J., Fu, L., Gemming, T., Bachmatiuk, A., & Liu, Z. (2019). New Frontiers in Electron Beam–Driven Chemistry in and around Graphene. Advanced Materials, 31(9), 1800715. https://doi.org/10.1002/adma.201800715

Sahoo, S., Hatui, G., Bhattacharya, P., Dhibar, S., Das, C. K., Sahoo, S., Hatui, G., Bhattacharya, P., Dhibar, S., & Das, C. K. (2018). One Pot Synthesis of Graphene by Exfoliation of Graphite in ODCB. Graphene, 2(1), 42–48. https://doi.org/10.4236/graphene.2013.21006

Schäffel, F., Wilson, M., & Warner, J. H. (2017). Motion of light adatoms and molecules on the surface of few-layer graphene. ACS Nano, 5(12), 9428–9441. https://doi.org/10.1021/nn2036494/suppl_file/nn2036494_si_002.avi

Shen, Y., & Lua, A. C. (2018). A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Scientific Reports, 3(1), 1–6. https://doi.org/10.1038/srep03037

Siburian, R., Dewiratih, Andiayani, Perangin-Angin, S., Sembiring, H., Sihotang, H., Raja, S. L., Supeno, M., Pasaribu, N., Simanjuntak, C., & Pratiwi, S. (2018). Facile method to synthesize N-graphene nano sheets. Oriental Journal of Chemistry, 34(4), 1978–1983. https://doi.org/10.13005/ojc/3404035

Siburian, R., L Raja, S., Supeno, M., & Simanjuntak, C. (2019). Application of coconut battery waste to graphic as an alternative electrode on primary battery cells. ABDIMAS TALENTA: Jurnal Pengabdian Kepada Masyarakat, 4(2), 668–673. https://doi.org/10.32734/abdimastalenta.v4i2.4202

Siburian, R., & Nakamura, J. (2021). Formation process of Pt subnano-clusters on graphene nanosheets. Journal of Physical Chemistry C, 116(43), 22947–22953. https://doi.org/10.1021/jp307327e

Siburian, R., Paiman, S., Hutagalung, F., Ali, A. M. M., Simatupang, L., Goei, R., & Rusop, M. M. (2022). Facile method to synthesize of magnesium-graphene nano sheets for candidate of primary battery electrode. Colloids and Interface Science Communications, 48. https://doi.org/10.1016/j.colcom.2022.100612

Siburian, R., Paiman, S., Hutagalung, F., Ali, A. M. M., Simatupang, L., & Simanjuntak, C. (2021). The New Material Battery Based on Mg/C‐ π . Energy Technology, 9(10), 2170101. https://doi.org/10.1002/ente.202170101

Siburian, R., Sihotang, H., Lumban Raja, S., Supeno, M., & Simanjuntak, C. (2018). New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry, 34(1), 182–187. https://doi.org/10.13005/OJC/340120

Simanjuntak, R. R., Siburian, R., Sebayang, F., Hutagalung, F. Y. S. T., Aritonang, S. P., & Simanjuntak, C. (2021). Performance of electrodes Mg/Graphene nanosheet (GNS) and Mg/N-Graphene nanosheet (N-GNS) as anode of battery. IOP Conference Series: Materials Science and Engineering, 1122(1), 012088. https://doi.org/10.1088/1757-899x/1122/1/012088

Singh, P., Bahadur, J., & Pal, K. (2017). One-Step One Chemical Synthesis Process of Graphene from Rice Husk for Energy Storage Applications. Graphene, 06(03), 61–71. https://doi.org/10.4236/graphene.2017.63005

Somanathan, T., Prasad, K., Ostrikov, K. K., Saravanan, A., & Krishna, V. M. (2019). Graphene oxide synthesis from agro waste. Nanomaterials, 5(2), 826–834. https://doi.org/10.3390/nano5020826

Supeno, M., Simanjuntak, C., & Siburian, R. (2020). Facile and Benign Method to Produce Large Scale Graphene Nano Sheets. J. Chem. Chem. Eng. Research Note, 39(6).

Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1), 012012. https://doi.org/10.1088/1742-6596/1495/1/012012

Symons, P. C., & Butler, P. C. (2018). Advanced Batteries for Electric Vehicles and Emerging Applications - Introduction: Flow Batteries. Handbook of Batteries, 37.18-37.21.

Tian, J. L., & Zhang, H. Y. (2018). Preparation and characterization of reduced graphene oxide using ascorbic acid and sodium citrate as binary reductant. Beilstein Journal of Nanotechnology, 25(1), 17–22. https://doi.org/10.1080/1536383x.2016.1247052

Tiwari, S. K., Kumar, V., Huczko, A., Oraon, R., Adhikari, A. De, & Nayak, G. C. (2017). Magical Allotropes of Carbon: Prospects and Applications. Graphene, 41(4), 257–317. https://doi.org/10.1080/10408436.2015.1127206

Uddin, M. E., Layek, R. K., Kim, N. H., Hui, D., & Lee, J. H. (2018). Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol. Composites Part B: Engineering, 80, 238–245. https://doi.org/10.1016/j.compositesb.2015.06.009

Westenfelder, B., Meyer, J. C., Biskupek, J., Kurasch, S., Scholz, F., Krill, C. E., & Kaiser, U. (2018). Transformations of carbon adsorbates on graphene substrates under extreme heat. Nano Letters, 11(12), 5123–5127. https://doi.org/10.1021/nl203224z

Zhu, J., Duan, R., Zhang, S., Jiang, N., Zhang, Y., & Zhu, J. (2019). The application of graphene in lithium ion battery electrode materials. Journal of the Korean Physical Society, 3(1), 1–8. https://doi.org/10.1186/2193-1801-3-585

Downloads

Published

2023-08-18

Issue

Section

Articles