Hijriah: Loading...

Masehi: Loading...

Banda Aceh, Aceh, Indonesia 23111

Synthesis of Carbon Dots From Empty Fruit Bunch Biochar an Acid-Free Hydrothermal Method

Authors

  • Marpongahtun Marpongahtun Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan http://orcid.org/0000-0002-1825-0097
  • Rufina Pramudita Postgraduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan
  • Saharman Gea Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan
  • Amru Daulay Postgraduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan

DOI:

https://doi.org/10.22373/ekw.v9i1.14524

Keywords:

Carbon Dots, Empty Fruit Bunch, Hydrothermal Methods, Waste

Abstract

Abstract: Carbon dots have gained much interest due to their outstanding optical and electrical properties, making them useful for a wide range of applications. Here Empty fruit bunch (EFB) biochar was used as a carbon source in a straightforward, environmentally friendly, and reproducible hydrothermal method for producing carbon quantum dots. In this study, the role of the hydrothermal process was seen and studied by comparing the shape and fluorescence. Exciting results from HRTEM show that the carbon quantum dots in the sample are 4 nm in size. The obtained CD emits bright blue luminescence, and the absorption peak of the carbon dots was observed in the UV region with maximum absorption at 205 nm and 322 nm. The light CD shows an intense sky blue color upon illumination by a UV-light source at 365 nm. The intensity of the photoluminescence (PL) spectra sharply increases with decreasing concentration of carbon dots. Meanwhile, the CD exhibited excitation-dependence, photo-stability, and well dispersibility. These results suggest that the present CD are potential applications in optoelectronics and imaging.

Abstrak: Karbon dots telah menarik banyak perhatian karena sifat listrik dan optik yang luar biasa, sehingga dapat digunakan untuk berbagai aplikasi. Penelitian ini, menggunakan biochar tandan buah kosong (EFB) sebagai sumber karbon dengan metode hidrotermal yang ramah lingkungan untuk menghasilkan karbon dots. Hasil HR-TEM yang menarik menunjukkan bahwa sampel karbon dots berukuran 4 nm. Karbon dots yang diperoleh memancarkan sinar biru terang dan puncak serapan titik karbon diamati pada spektrofotometri Uv-Vis dengan serapan maksimum pada 205 nm dan 322 nm. Intensitas karbon dots menunjukkan warna biru langit di cahaya UV pada 365 nm. Intensitas spektroskopi luminesens meningkat tajam dengan menurunnya konsentrasi titik karbon. Sementara itu, karbon dots menunjukkan eksitasi, stabilitas, dan dispersibilitas baik. Hasil ini menunjukkan bahwa karbon dots dapat digunakan pada beberapa aplikasi seperti dalam optoelektronik dan pencitraan.

References

Ahmad, A., Rahmad, Rita, N., & Noorjannah, L. (2022). Effect of acid hydrolysis on bioethanol production from oil palm fruit bunches. Materials Today: Proceedings, 63, S276–S281. https://doi.org/10.1016/j.matpr.2022.02.461

Chang, K., Zhu, Q., Qi, L., Guo, M., Gao, W., & Gao, Q. (2022). Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source. Materials, 15(2), 466. https://doi.org/10.3390/ma15020466

Choi, Y., Choi, Y., Kwon, O.-H., & Kim, B.-S. (2018). Carbon Dots: Bottom-Up Syntheses, Properties, and Light-Harvesting Applications. Chemistry - An Asian Journal, 13(6), 586–598. https://doi.org/10.1002/asia.201701736

De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286. https://doi.org/10.1039/c3ra00088e

Gea, S., Surga, M., Rahayu, S., Marpongahtun, Hutapea, Y. A., & Piliang, A. F. (2018). The analysis of thermal and mechanical properties of biocomposite policaprolactone/cellulose nanofiber from oil palm empty fruit bunches. 020063. https://doi.org/10.1063/1.5082468

González-González, R. B., González, L. T., Madou, M., Leyva-Porras, C., Martinez-Chapa, S. O., & Mendoza, A. (2022). Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials, 12(3). https://doi.org/10.3390/nano12030298

Han, Z., He, L., Pan, S., Liu, H., & Hu, X. (2020). Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence, 35(7), 989–997. https://doi.org/10.1002/bio.3803

He, M., Zhang, J., Wang, H., Kong, Y., Xiao, Y., & Xu, W. (2018). Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 13(1), 175. https://doi.org/10.1186/s11671-018-2581-7

Jamaludin, N., Tan, T. L., Zaman, A. S. K., Sadrolhosseini, A. R., & Rashid, S. A. (2020). Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar. Materials, 13(15), 3356. https://doi.org/10.3390/ma13153356

Liu, J., Li, R., & Yang, B. (2020). Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6(12), 2179–2195. https://doi.org/10.1021/acscentsci.0c01306

Liu, Y., Yong, C., Tong, B., Li, Y., Wang, N., & Lei, Y. (2022). Modification of carbon dots derived from biomass by exogenous nitrogen doping: Action mechanism and difference analysis. Optical Materials, 134(September). https://doi.org/10.1016/j.optmat.2022.113144

Marpongahtun, Gea, S., Muis, Y., Andriayani, Novita, T., & Piliang, A. F. (2018). Synthesis of Carbon Nanodots from Cellulose Nanocrystals Oil Palm Empty Fruit by Pyrolysis Method. Journal of Physics: Conference Series, 1120(1), 1–6. https://doi.org/10.1088/1742-6596/1120/1/012071

Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., … Gandhirajan, V. (2020). Biocompatible Carbon Quantum Dots Derived from Sugarcane Industrial Wastes for Effective Nonlinear Optical Behavior and Antimicrobial Activity Applications. ACS Omega, 5(47), 30363–30372. https://doi.org/10.1021/acsomega.0c03290

Rani, U. A., Ng, L. Y., Ng, C. Y., Mahmoudi, E., Ng, Y.-S., & Mohammad, A. W. (2021). Sustainable production of nitrogen-doped carbon quantum dots for photocatalytic degradation of methylene blue and malachite green. Journal of Water Process Engineering, 40, 101816. https://doi.org/10.1016/j.jwpe.2020.101816

Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921. https://doi.org/10.1039/C4TC00988F

Xu, D., Lei, F., Chen, H., Yin, L., Shi, Y., & Xie, J. (2019). One-step hydrothermal synthesis and optical properties of self-quenching-resistant carbon dots towards fluorescent ink and as nanosensors for Fe 3+ detection. RSC Advances, 9(15), 8290–8299. https://doi.org/10.1039/C8RA10570G

Yi, Z., Li, X., Zhang, H., Ji, X., Sun, W., Yu, Y., Sain, M. (2021). High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta, 222, 121663. https://doi.org/10.1016/j.talanta.2020.121663

Downloads

Published

2023-08-18

Issue

Section

Articles