Hijriah: Loading...

Masehi: Loading...

Banda Aceh, Aceh, Indonesia 23111

Hydrodeoxygenation of Castor Oil As an Alternative Source of Biohydrocarbon Using Nickel Catalyst Loaded On Hzsm-5 Zeolite

Authors

  • Muhammad Abimansyah Saragih Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia
  • Muhammad Irvan Hasibuan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia
  • Loren Simangunsong Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia
  • Ahmad Nasir Pulungan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia http://orcid.org/0000-0001-9024-6546
  • Junifa Layla Sihombing Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, Indonesia http://orcid.org/0000-0003-4359-3443

DOI:

https://doi.org/10.22373/ekw.v8i2.12583

Keywords:

Biohydrocarbon, Hydrodeoxygenation, Castor Oil

Abstract

Abstract: The need for energy continues to increase along with rapid population growth. Fuel is one of the most critical energy sectors. However, the limited availability of fossil fuels and the issue of air pollution have prompted various studies to find alternative fuels that are renewable and environmentally friendly. In this study, the conversion of castor oil into biohydrocarbons through the hydrodeoxygenation (HDO) process using the HZSM-5 catalyst loaded with Ni (Ni/HZSM-5) aims to produce biohydrocarbon products as a component of liquid fuel. This research has been carried out in 3 main stages, including: 1) Catalyst preparation; 2) Catalyst characterization; and 3) Activity and selectivity test of HZSM-5 catalyst and Ni/HZSM-5 in the hydrodeoxygenation process of castor oil at reaction temperatures of 350 oC, 375 oC, and 400 oC. The conversion results of castor oil using HZSM-5 and Ni/HZSM-5 catalysts were 3.23%, 25.65%, 43.72%, and 13.78%, 35.03%, 71.01%, respectively. From the GC-MS analysis data on the product at 400 oC, the selectivity of HZSM-5 and Ni/HZSM-5 was 20.02% and 23.71% for the kerosene fraction, as well as 15.79% and 11.01% for the gasoil fraction, respectively.

Abstrak: Kebutuhan energi terus meningkat seiring dengan pertumbuhan jumlah penduduk yang sangat pesat. Salah satu sektor energi yang paling dibutuhkan adalah bahan bakar minyak. Namun kesediaan bahan bakar fosil yang terbatas dan isu pencemaran polusi udara, mendorong berbagai penelitian untuk menemukan alternatif bahan bakar yang terbarukan dan ramah lingkungan. Dalam penelitian ini, konversi minyak jarak menjadi biohidrokarbon melalui proses hidrodeoksigenasi (HDO) menggunakan katalis HZSM-5 teremban logam Ni (Ni/HZSM-5) bertujuan untuk menghasilkan produk biohidrokarbon sebagai komponen bahan bakar cair. Penelitian ini telah dilakukan dengan 3 tahapan utama yaitu 1) Preparasi katalis, 2) Karakterisasi katalis, 3) Uji aktivitas dan selektifitas katalis HZSM-5 serta Ni/HZSM-5 dalam proses hidrodeoksigenasi minyak biji jarak dengan temperatur proses 350 oC, 375 oC, dan 400 oC. Hasil konversi minyak biji jarak dengan menggunakan katalis HZSM-5 dan katalis Ni/HZSM-5 berturut-turut sebesar 3.23%, 25.65%, 43.72% dan 13.78%, 35.03%, 71.01%. Dari data analisis GC-MS produk di suhu 400 oC diperoleh selektivitas katalis HZSM-5 dan katalis Ni/HZSM-5 berturut-turut adalah 20.02% dan 23.71% untuk fraksi kerosene, serta 15.79%  dan 11.01% untuk fraksi gasoil.

References

Al-Muttaqii, M., Kurniawansyah, F., Prajitno, D. H., & Roesyadi, A. (2019). Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel. Indonesian Journal of Chemistry, 19(2), 319–327. https://doi.org/10.22146/ijc.33590

Gao, C., Zhang, J., Xing, E., Xie, Y., Zhao, H., Ning, P., & Shi, Y. (2021). Upgrading of palmitic acid to diesel-like fuels over Ni@HZSM-5 bi-functional catalysts through the in situ encapsulation method. Molecular Catalysis, 511(July), 111715. https://doi.org/10.1016/j.mcat.2021.111715

Gao, J., Zhou, H., Zhang, F., Ji, K., Liu, P., Liu, Z., & Zhang, K. (2022). Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. Materials, 15(6). https://doi.org/10.3390/ma15062206

Gea, S., Haryono, A., Andriayani, A., Sihombing, J. L., Pulungan, A. N., Nasution, T., Rahayu, R., & Hutapea, Y. A. (2020). The Effect of Chemical Activation Using Base Solution With Various Concentrations Towards Sarulla Natural Zeolite. Elkawnie, 6(1), 85. https://doi.org/10.22373/ekw.v6i1.6913

Gea, S., Hutapea, Y. A., Piliang, A. F. R., Pulungan, A. N., Rahayu, R., Layla, J., Tikoalu, A. D., Wijaya, K., & Saputri, W. D. (2022). A Comprehensive Review of Experimental Parameters in Bio-oil Upgrading from Pyrolysis of Biomass to Biofuel Through Catalytic Hydrodeoxygenation. Bioenergy Research. https://doi.org/10.1007/s12155-022-10438-w

Jimmy, Gunardi, I., Aushaf, F., Pamungkas, G., & Roesyadi, A. (2018). Karakterisasi katalis Fe-Co / HZM-5 Untuk Reaksi Fischer-Tropsch. 13(September), 5–10.

Liu, X., Wu, Y., Zhang, J., Zhang, Y., Li, X., Xia, H., & Wang, F. (2022). Catalytic Pyrolysis of Nonedible Oils for the Production of Renewable Aromatics Using Metal-Modified HZSM-5 Catalysts. ACS Omega, 7(22), 18953–18968. https://doi.org/10.1021/acsomega.2c02011

Marlinda, L., Al-Muttaqii, M., Gunardi, I., Roesyadi, A., & Prajitno, D. H. (2017). Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 12(2), 167–184. https://doi.org/10.9767/bcrec.12.2.496.167-184

Moon, S., Chae, H. J., & Park, M. B. (2019). Dehydration of bioethanol to ethylene over H-ZSM-5 catalysts: A scale-up study. Catalysts, 9(2), 1–12. https://doi.org/10.3390/catal9020186

Nur Azreena, I., Lau, H. L. N., Asikin-Mijan, N., Hassan, M. A., Izham, S. M., Safa Gamal, M., Nor Adira Wan Khalit, W., Arumugam, M., Kennedy, E., Stockenhuber, M., & Taufiq-Yap, Y. H. (2022). Hydrodeoxygenation of fatty acid over La-modified HZSM5 for premium quality renewable diesel production. Journal of Analytical and Applied Pyrolysis, 161(July 2021), 105406. https://doi.org/10.1016/j.jaap.2021.105406

Qi, X., & Fan, W. (2019). Selective Production of Aromatics by Catalytic Fast Pyrolysis of Furan with in Situ Dehydrogenation of Propane. ACS Catalysis, 9(3), 2626–2632. https://doi.org/10.1021/acscatal.8b04859

Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., & Yusuf, M. (2020). Characteristic and Catalytic Performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for Hydrocracking of MEFA Rubber Seed Oil into Biogasoline Fraction. Catalysts, 10, 121.

Zahed, M. A., Movahed, E., Khodayari, A., Zanganeh, S., & Badamaki, M. (2021). Biotechnology for carbon capture and fixation: Critical review and future directions. Journal of Environmental Management, 293(April), 112830. https://doi.org/10.1016/j.jenvman.2021.112830

Zhao, X., Wei, L., Cheng, S., & Julson, J. (2017). Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts, 7(3). https://doi.org/10.3390/catal7030083

Zhu, P., Yang, G., Sun, J., Fan, R., Zhang, P., Yoneyama, Y., & Tsubaki, N. (2017). A hollow Mo/HZSM-5 zeolite capsule catalyst: Preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry A, 5(18), 8599–8607.https://doi.org/10.1039/c7ta02345f

Downloads

Published

2023-01-18

Issue

Section

Articles